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[1] Prior studies have examined the time-stationary (and quasi-stationary) dynamic response
of relativistic electrons in the Earth’s outer radiation belt to changes in solar wind bulk speed
using linear prediction filters [Baker et al., 1990; Vassiliadis et al., 2002]. For this study, we have
implemented an adaptive system identification scheme, based on the Kalman filter with process
noise, to determine optimal time-dependent electron response functions. The nonlinear
dynamic response of the radiation belts can then be tracked in time by recursively updating the
optimal linear filter coefficients as new observations become available. We demonstrate a
significant improvement in zero-time-lag electron log-flux ‘‘predictions’’ relative to models that
are based on time-stationary linear prediction filters, while incurring only a slight increase in
computational complexity. We conclude by discussing modifications necessary for an
operational specification and forecast model, including the assimilation of real-time data, more
sophisticated model structures, and a more practical gridded description of the radiation belt
state. INDEX TERMS: 2784 Magnetospheric Physics: Solar wind/magnetosphere interactions; 2720 Magnetospheric
Physics: Energetic particles, trapped; 2722 Magnetospheric Physics: Forecasting; KEYWORDS: Kalman filter, electron
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1. Introduction
1.1. Linear Filters

[2] Linear prediction filters have been used to help
understand dynamic coupling between the solar wind
and the geospace environment for well over 20 years.
Arnoldy [1971] first noted the strong linear relationship
between the Bz component of the interplanetary magnetic
field and the AE index, a measure of auroral electrojet
activity. Iyemori et al. [1979] were among the first to
calculate discrete linear impulse responses of several geo-
magnetic indices to Bz. A number of similar studies fol-
lowed in the early-to-middle 1980s using various different
inputs and outputs [e.g., Clauer et al., 1981; Clauer et al.,
1983; McPherron et al., 1984; Bargatze et al., 1985]. Several
excellent review articles can be found in Kamide and Slavin
[1986].
[3] The linear prediction filters used for these studies

were typically comprised of simple vectors of linear coef-
ficients that were convolved with an input time series to
provide a zero-lag prediction (a ‘‘nowcast’’) of the linear
response in a given output time series. This type of model
can be thought of as a finite impulse response (FIR)
function, since the response becomes zero as soon as there
is no longer input to be filtered. This is represented

numerically in equation (1), where F represents the filter,
u represents the input data, and ŷ is the estimated output.

ŷt ¼
XM

j¼p

Fjut�j ð1Þ

[4] Because of increased operational spacecraft use, a
strong interest in practical radiation belt electron predic-
tions developed in the middle-to-late 1980s. Thus, not
surprisingly, linear prediction filters were one of the first
techniques applied. Reasonably accurate electron flux pre-
dictions for geostationary altitudes were made using both
causal (i.e., p � 0 [Nagai, 1988]) and acausal [Baker et al.,
1990] linear filters designed to operate on several different
types of input data streams. Representative filter coeffi-
cients describing the discrete impulse response of relativ-
istic radiation belt electrons at geostationary altitudes to
changes in solar wind speed are shown in Figure 1.
[5] A more recent analysis by Vassiliadis et al. [2002] used

observations of 2--6 MeV electrons from the Solar, Anom-
alous, and Magnetospheric Particle Explorer (SAMPEX) to
study the spatially distributed (in L-shell) radiation belt
response to changes in solar wind speed. Figure 2 is a
recreation of the response function profile originally pre-
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sented by Vassiliadis et al., but uses SAMPEX electron data
from L = 1.1--8.0 to calculate causal responses only. At
least two spatially distinct responses are apparent. One, at
a broad range of higher geomagnetic L-shells (i.e., L � 4),
had a 1--2 day delay before it peaked, and was followed by
an extended decay period. This was consistent with earlier
studies based on geostationary data. The other response
was observed near L = 3, occurred nearly simultaneously
with changes in solar wind speed, and had little or no
extended decay period. Significant solar cycle and seasonal
variations in the response functions, as well as their
prediction efficiencies, were also noted and discussed in
terms of the well-known equinoctial and axial hypotheses
[i.e., Boller and Stolov, 1970; Russell and McPherron, 1973;
Cliver et al., 2000].

1.2. Adaptive System Identification

[6] All the previously mentioned studies employed some
sort of batch process for system identification (parameter
estimation). In other words, they accumulated a large
regression matrix from all of the available input data, then
inverted it to determine the filter coefficients that best
predicted all of the observed output. The phasing of
electron flux variations was predicted quite well with these
time-invariant filters; however, the amplitudes, even for
log-flux predictions, were often severely underestimated.
This implied that even though solar wind speed was
probably a significant driver of radiation belt dynamics
the acceleration of relativistic electrons might be a fairly
nonlinear process, all the relevant inputs were not being
considered, or probably both.
[7] The time variability of the response function profiles

observed by Vassiliadis et al. [2002] suggested that an
adaptive system identification technique might prove use-
ful. Not only would it be able to systematically vary model
parameters to track nonstationary dynamics in time, but
the recursive nature of most adaptive algorithms is ideal
for implementation in an on-line operational space
weather model. Figure 3 illustrates graphically a general-
ized adaptive identification configuration for a determin-
istic model.

[8] Most adaptive system identification techniques are
closely related to formal data assimilation (DA) algorithms.
One popular DA tool with extensive operational heritage is
the Kalman filter (KF). This recursive algorithm provides
the optimal estimate of a system’s state at particular time. It
requires a baseline model and a statistical description of
the uncertainty associated with both the model and obser-
vations that can be related to the state. What is not always
appreciated about the Kalman filter, however, is that the
state may include the parameters of the model itself. In fact,
the state can be comprised solely of the model parameters.
This provides an excellent adaptive system identification
technique that might be applied to the relatively simple FIR
prediction filters discussed previously.
[9] The primary purpose of the present paper is to

(1) describe in some detail how the KF is used to adaptively

Figure 1. Linear prediction filter coefficients describ-
ing the time-invariant response of the log-flux of 2--
6 MeV electrons at L = 6.6 to a discrete unit impulse in
the solar wind velocity.

Figure 3. A general adaptive system identification
configuration for a deterministic model. Input, u(t),
passes to both the physical system, or Process, and to a
generalized deterministic model. The residuals (e(t) =
y(t) � ŷ(t)) are used to dynamically modify the model to
better match new observations, but they do not drive
the model directly (indicated by the arrow passing
through the model block, not into it).

Figure 2. L-shell dependent, time-invariant impulse
response profile of the log-flux of 2--6 MeV electrons.
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update the coefficients of simple linear prediction filters,
(2) provide a brief demonstration of the predictive capa-
bility of the KF when it is configured to track nonlinear,
non-time-stationary radiation belt dynamics, and (3) de-
scribe how real-time data and more sophisticated model
structures might be employed to provide improved spec-
ification and forecasting of radiation belt electrons for use
in space weather applications.

2. The Kalman Filter

[10] The Kalman filter is an approximate filter for non-
linear systems that is based on a first-order linearization of
the state equation [Ljung, 1979]. It therefore requires that
the system of interest can be described in a state-space
configuration. Since we are presently only interested in the
system identification aspect of the KF, our ‘‘state’’ will be
comprised solely of the model parameters. Equation (2)
illustrates this state-space configuration.

qtþ1 ¼ qt þ vt

yt ¼ fT
t qt þ et

ð2Þ

[11] For simplicity, and for consistency with the research
described in section 1, the models used in this study are
single input, single output (SISO) linear filters that de-
scribe the dynamic relationship between daily averaged
solar wind speed and relativistic electron flux. Therefore qt,
the parameter vector, is simply a vector of linear filter
coefficients designed to provide a zero-lag ‘‘prediction.’’ ft
is the regression vector, comprised of the time-lagged
inputs to the model. The vt is the process noise, which
describes the error in the filter parameters as a function of
time, and et is the observation error. Both vt and et are
usually considered independent white noise sequences. In
an online (i.e., real-time) application, neither are known a
priori, so it is necessary to represent them as stochastic
processes that are defined by their respective covariance
matrices (Qv = E {vvT} and Qe = E {eeT}; E is the statistical
expectation). The KF algorithm is then

q̂tþ1 ¼ q̂t þKt yt � fT
t qt

� �

Kt ¼ Ptft f
T
t Ptft þQe

� ��1

Ptþ1 ¼ I�KtfT
t

� �
Pt þQv

ð3Þ

[12] In other words, the best estimate of the model’s
parameters for the next time step is the sum of the current
model parameters and the current residuals multiplied by
the Kalman gain, Kt. The gain is updated using the state
estimation covariance matrix, Pt, and inversely scaled
according to the uncertainty associated with the observa-
tions, Qe (the larger the variance in the observation error,
the less confidence we have in those observations and
therefore the smaller the gain). Finally, Pt is mapped to the
next time step and should become smaller as more infor-
mation is incorporated into the filter.

[13] The KF should remain stable so long as there is
sufficient excitation (i.e., Dft 6¼ 0) in the input signal. If the
input signal is actually nonexistent, Pt will grow linearly
according to Pt + Qv. Therefore prolonged periods without
excitation may result in destabilization of the KF algo-
rithm. On the other hand, if there is persistent excitation,
but no process noise, the Kalman gain will approach zero
in the limit t ! 1 as new observations are assimilated.
This is only desirable if the true system dynamics are time-
invariant, otherwise useful information may be lost if the
system’s true nonlinear response and the model’s predic-
tions diverge.
[14] The primary reason for this kind of divergence in a

system identification scheme is a mismatch between the
baseline model structure and the true system dynamics. It
is therefore advisable to specify a finite, positive value for
Qv, thereby allowing the model parameters to vary with
time as a sort of random walk. In other words, the process
noise introduces a finite memory into the algorithm which
allows the linear prediction filter to track nonstationary
signals through time. This effective memory is somewhat
ad hoc, but since Qv is the variance of the noise in the
model parameters, larger values generally imply faster
tracking ability. Typically, values for Qv are chosen by trial
and error, where there is a trade-off between noise sensi-
tivity and parameter tracking capability [Johansson, 1993].
[15] Figure 4 illustrates graphically how the linear pre-

diction filter coefficients evolve with time for two different
KF configurations. The left panel of Figure 4 specifies a
process noise to be zero, resulting in what amounts to a
recursive linear least squares solution to the problem. The
panel on the right in Figure 4 shows the KF solution when
a fixed, finite process noise is allowed. Four snapshots
were taken: one at the beginning (the initial guesses for q̂
were zero vectors), two in the middle, and one at the
end of assimilating the training validation data set. The
changing response functions illustrate (1) the conver-
gence of the KF to a global solution, in the case where
Qv = 0 and (2) the fact that when process noise is
allowed, the linear filter coefficients vary with time,
and are therefore able to track nonlinear dynamics that
manifest as nonstationary processes in discrete time
series.

3. Radiation Belt and Solar Wind Data

[16] It is important to compare and contrast the results
attained in this study with those that came before. There-
fore we chose to demonstrate the KF using the same data
as Vassiliadis et al. [2002]. A brief description follows.

3.1. Relativistic Electrons

[17] The Solar, Anomalous, and Magnetospheric Particle
Explorer (SAMPEX) satellite, launched in 1992, has a low-
altitude (
600 km), high-inclination (
82� orbit, with a
period of 
100 min [Baker et al., 1993]. As a result of its low
altitude, it is possible to use the International Geomagnetic
Reference Field (IGRF), an internal magnetic field model,
to bin SAMPEX particle measurements according to a
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nominal geomagnetic L-shell. The ELO channel of the
Proton Electron Telescope (PET) [Cook et al., 1993] was
used for this study, providing flux measurements for 2--
6 MeV electrons (electrons/(cm2 � sec � steradian)), a
particle population with important space weather implica-
tions [Baker, 2001, 2002]. Strong diurnal variability is often
observed in the ELO data, and is usually attributed to the
rotation of the Earth’s imperfect dipole with respect to the
relatively fixed orbit plane of the SAMPEX satellite. In
order to avoid undesirable statistical effects resulting from
strong auto-correlations associated with these diurnal var-
iations, daily averages of electron flux observations were
used. Finally, the log10 of electron flux observations was
used to reduce the assymetry in the data’s probability
distribution function (PDF), making it more amenable to
linear estimation algorithms.

3.2. Solar Wind Speed

[18] The solar wind data used in this study was taken
from the OMNIWeb database, a compilation of hourly
solar wind magnetic field and plasma measurements,
taken from a variety of different satellites over the last

several decades, and cross-normalized to provide multi-
source uniformity (National Space Science Data Center,
OMNIWeb, Near Earth Heliosphere Data, National Space
Science Data Center, NASA, http://nssdc.gsfc.nasa.gov/
omniweb/, 2003). We limited our current study to include
only daily averaged solar wind bulk speed between 1994
and 1999, since the OMNI data density outside this range
fell from an average of well over 80% to below 40%. The
daily averaged solar wind speed PDF was not as asym-
metric about its mean as the electron data and was
therefore left as-is.

3.3. Data Gaps

[19] The SAMPEX radiation belt data set was fairly
complete, however significant data gaps in the solar wind
data existed throughout the time span of interest. This
complicates the process of generating the regression vec-
tor for each iteration because only good data points may be
included. The problem is exacerbated when dealing with
filter-based models since they are comprised of a series of
time delayed coefficients, which means a single bad datum
in the input time series requires that a number of data
points equal to the length of the filter must be dropped.
[20] The KF itself provides an excellent mechanism for

dealing with this problem. The observation error covari-
ance matrix, Qe, is a measure of confidence in the obser-
vations that make up the training data. There is no reason
that Qe cannot be a function of time, and therefore spec-
ified very large for time steps corresponding to solar wind
data gaps. This will result in the calculation of a very small
Kalman gain, and effectively negate the influence of those
particular observations on the parameter estimation.
[21] Once the optimal coefficients are determined, one

must also take care to not pass bad data through the filter
when making predictions. In order to keep the focus of this
paper on the KF algorithm itself, we chose to apply a very
simple interpolation technique to deal with this prediction
problem. Time steps corresponding to data gaps in the
solar wind input were simply filled with the average
electron flux for that particular L-shell.

4. Model Performance
4.1. Prediction Quality

[22] The first and most straightforward test of appropri-
ateness for any model is its ability to reproduce observed
dynamics given relevant intputs. We determined a simple
metric specifying the percent of observation variance (PV,
an actual ‘‘prediction efficiency’’ only if the expected model
error has zeromean) by subtracting the ratio of the variance
of a model’s residuals to the variance of the observations
from one (1 � (sresid.

2 /sobs.
2 )). This provides an effective skill

score describing themodel’s predictive ability relative to the
timeseriesaverage.Normallymodelvalidationisdoneusing
an ‘‘out of sample’’ data set. In the case where the KF is used
to dynamically update linear prediction filter coefficients,
however, it is necessary to use ‘‘in sample’’ data in order to
drive the recursive identification algorithm. Therefore the
same training/validation data must be used to calculate PV.

Figure 4. The 2--6 MeV log-flux responses to impulses
in solar wind speed determined using the Kalman filter
with and without process noise (magenta). The fixed
reference response (blue) is the global, or ‘‘batch,’’
solution obtained when all the data are included.
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[23] Figure 5 compares SAMPEX observations from L =
1.1 to L = 8.0 with predicted output from both static and
adaptive FIR linear prediction filters. The results from the
KF with process noise show significant improvements in
predictive ability over the time-invariant FIR linear filters
across almost the entire range of L-shells. The improve-
ments are particularly pronounced between L � 3 and
L � 5. It turns out, however, that a PV profile for simple
persistence (i.e., today’s flux will be the same as yester-
day’s) is very similar to the profile shown for our adaptive
model. In point of fact, persistence is implicitly included in
the KF with process noise. One might argue that a simpler
static model which explicitly accounts for persistence
might be used. A more sophisticated approach to residual
analysis is necessary to determine which model is most
appropriate.

4.2. Residual Analysis

[24] Neither the model nor its training validation data
are ever perfect (i.e., residuals 6¼ 0). If the model is chosen
wisely, however, there should be little or zero correlation
or recurrent structure in the residuals. A simple test for
determining the ‘‘whiteness’’ of the model residuals is to
plot a histogram of the residual time series. This error
distribution function should have a zero-mean, Gaussian
profile. If the mean deviates significantly from zero, or the
distribution function is significantly skewed to one side or
the other, this is an immediate indication that the model is
biased, and is unlikely to properly exploit the dynamical
information available in the training validation signals.
[25] Figure 6 shows the residuals and corresponding

distribution functions for three different models at L =
6.6: 1) a time-invariant Finite Impulse Response (FIR)

linear prediction filter; 2) a time-invariant Auto-Regressive
(with eXogenous input, ARX) liner model that filters both
the solar wind input and time-lagged flux observations
[see Vassiliadis et al., 2000; Vassiliadis, 2000, and references
therein for a thorough description of this type of dynam-
ical model]; and 3) our adaptive FIR model based on the

Figure 5. Static FIR and adaptive Kalman filter (KF) predictions of 2--6 MeV electron log flux for
1994 through 1999 are compared with observations. The percent of variance (PV) is plotted as a
function of L-shell. Historical averages were used to substitute for model output during periods
without reliable solar wind input (recognizable as horizontal contour lines in the predicted
output), and were not included in the calculation of PV.

Figure 6. Residuals for three different models predict-
ing 2--6 MeV electrons at geostationary altitude and
their associated histograms. Note the times when the
residuals appear to be nonexistent (early 1994, and
subsequent smaller gaps). These correspond to gaps in
the solar wind data and are not indicative of increased
model accuracy.
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KF with process noise. The first and third panels corre-
spond to the predictions and data presented previously,
just at L = 6.6. The ARX residuals in the second panel are
presented in order to compare the KF output with a static
model that accounts for persistence.
[26] If the system being modeled is linear and determin-

istic, the residuals (in units of log10-Flux) from the time-
invariant FIR filter should be normally distributed about
zero. They not only have a significant variance (0.34) and
nonzero mean (�0.013), but are very asymmetric about
that mean (skewness = 0.53). The nondeterministic but
time-invariant ARX model, on the other hand, generated
residuals with a small variance (0.18) and a near-zero
mean (�0.0046). The skewness of the ARX residuals,
however, is relatively high (0.33), indicating a bias in the
model (i.e., it consistently over- or under-estimates the
predicted output) which implies a true nonlinear relation-
ship between the model input and output which cannot be
accounted for with such a simple linear model structure.
The KF residuals, while possessing a higher variance
(0.27), have much less asymmetry (skewness = 0.10) than
the ARX residuals.
[27] Finally, a time-lagged correlation analysis was per-

formed to determinewhichmodel type ismost appropriate.
Normalized auto-correlation (ACF) and cross-correlation
(CCF) functions were calculated (see Johansson [1993], or
almost any modern time series analysis text for details).
The top half of Figure 7 shows the ACFs for both the solar
wind input and the residuals presented in Figure 6. The
95% confidence interval is based on a c2 distribution, and
specifies the correlation limit at which we chose to con-
sider the signal ‘‘white’’. The FIR model residuals show
significant 13, 27, 90, and 180 day periods, all often noted in

solar wind and magnetospheric observations [Li et al.,
2001a and references therein]. These oscillations also exist
in the ARX residuals, but with much smaller amplitudes,
often, but not always, falling below the 95% confidence
limits. The KF residuals, on the other hand are almost
perfectly white within the 95% confidence interval used
here.
[28] Whiteness of residuals, in this case, is a strong

indication that the model is able to account for nonlinear
dynamics in the system. Such nonlinearities can be the
result of either complicated internal dynamics (usually
manifesting as recurrent structure in the time series itself),
or actual nonlinear relationships that describe how the
input data directly drives the output data. The relatively
small cross correlations between the KF residuals and the
solar wind speed input imply that this adaptaive FIR filter
was able to account for both types of nonlinear dynamics,
while the ARX model mostly only accounted for internal
and recurrent dynamics that were not directly related to
solar wind speed. For ‘‘nowcasts’’ it may very well be best
to use something like the ARX model. If, however, one
intends to attempt to provide actual forecasts, bias in the
model will ultimately lead to a degradation in prediction
quality. As is almost always the case, it appears as though
the choise of model type is a strong function of the
intended application.

5. A Practical KF Implementation

[29] The preceding performance evaluation demon-
strated the value of the KF as a powerful adaptive system
identification and filtering technique. The small but sig-
nificant correlations remaining in the KF residuals, how-
ever, indicate that there are deficiencies in the underlying
model structure that cannot be accounted for with either
persistence or simple nonlinearities that manifest as time-
variant model parameters. A practical real-time radiation
belt specification and forecasting tool will require a num-
ber of model enhancements. These can be broken into
three distinct categories: 1) choice of appropriate real-time
data sets; 2) improved dynamical model structures; and 3) a
multidimensional, gridded radiation belt state.

5.1. Real-Time Data

[30] Possibly the most germane consideration for any
empirical radiation belt model is the choice of data to
incorporate. The OMNIWeb and SAMPEX data used in
this study to validate the KF will not suffice for an oper-
ational model because: 1) they are not available in real-
time; and 2) they have undergone a significant amount of
post-processing to put them in a form that is more appro-
priate for scientific analysis than it is for assimilation into
on-line specification and forecast models.
[31] The most likely candidate to provide real-time solar

wind measurements is currently the Advanced Composi-
tion Explorer (ACE) satellite. ACE is stationed well outside
of the Earth’s magnetosphere, in the solar wind, approx-
imately 1.5 million kilometers (
220 RE) upstream of the
Earth. While ACE was primarily designed for scientific

Figure 7. Normalized autocorrelation functions (ACF)
and cross-correlation functions (CCF, smoothed with
27-day moving average ‘‘boxcar’’ filter) for model
residuals at geostationary altitude. Colors correspond
to the residuals shown in Figure 6. The 95% confidence
interval for a N(0, 1) distribution is designated by the
dashed red lines.
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purposes, it provides nearly continuous real-time mea-
surements of relevant solar wind parameters, many of
which have already been incorporated into a number of
space weather models [Li et al., 2001b] (Space Environment
Center, NOAA, REFM, Relativistic Electron Forecast
Model, http://www.sel.noaa.gov/refm/, 2003). While the
end of its likely operational life is approaching, both the
scientific and engineering communities have come to
acknowledge its vital importance to magnetospheric stud-
ies and space weather applications, so it is probable that
similar missions will follow.
[32] A number of operational satellites already provide

in situ energetic electron measurements. The National
Oceanic and Atmospheric Administration (NOAA) geosta-
tionary GOES satellites, and the Los Alamos National
Laboratory (LANL) geostationary satellites provide com-
plete local-time coverage at geostationary altitudes. In
addition, a number of the U.S. Department of Defense
Global Positioning System (GPS) satellites also carry par-
ticle detectors on-board, and they pass through the heart
of the outer electron radiation belt several times per day.
Combined, these satellites can potentially provide real-time
radiation belt measurements from L � 4--7. Finally, the
National Polar-orbiting Operational Environmental Satel-
lite System (NPOESS), first proposed in 1994, should see its
first component launch by 2009. This multipurpose, multi-
agency, multisatellite system will provide data on the radi-
ation environment across all relevant L-shells in real-time
(IORD II - National Polar-Orbiting Operational Environ-
mental Satellite System (NPOESS), http://npoesslib.
ipo.noaa.gov/, 2001).

5.2. Improved Dynamical Model

[33] A very simple model (the single input/single output
(SISO) finite impulse response (FIR) filter) was chosen for
the purpose of demonstrating the capabilities of the KF
without focusing unnecessarily on its underlying dynam-
ical structure. There are a number of more sophisticated
dynamical model structures that should provide better
predictions, and ultimately, improved insight into the
dynamical characteristics of the radiation belts.
[34] First, while solar wind speed has a well-known

correlation with electron fluxes in the inner magneto-
sphere, it is clearly not the only driver. Multiple solar
wind measurements should be included as simultaneous
inputs, especially those pertaining to the interplanetary
magnetic field. Suitable inputs may be determined empir-
ically [Weigel et al., 2002, 2003], through expert analysis [Li
et al., 2001b], or using formal dimensional analysis [e.g.,
Perreault and Akasofu, 1978; Vasyliunas et al., 1982; Gonzalez,
1990] when the objective is improved understanding and
separation of the true physical processes.
[35] Next, the FIR structure requires a large number of

time-lagged filter coefficients to describe the temporal
evolution of a dynamic system with any accuracy. This,
as we noted for the period early in 1994, results in a
significant amount of good data that is necessarily thrown
out with the bad. However, if one extends equation (1) to
include dynamic feedback, it is often possible to recreate

the full response of the system with far fewer free param-
eters. Equation (4) is usually referred to as an Output Error
(OE) model.

ŷt ¼
XM

j¼p

Fjut�j �
XN

j¼1

Gjŷt�j ð4Þ

[36] In addition, much of the recurrent internal dynam-
ics of the radiation belts can be reproduced with auto-
regressive filters, as in the case of the ARX model. By
additionally filtering the time-lagged model residuals,
however, a more flexible ‘‘noise model’’ is provided in
the form of equation (5), often referred to as an Auto-
Regressive Moving Average filter (ARMA; some contem-
porary literature refers to the ARX model as an ARMA
model, but this notation is generally considered obsolete):

ŷt ¼
XM

j¼1

Hjet�j �
XN

j¼1

Gjyt�j; et ¼ yt � ŷt ð5Þ

[37] Simple linear system identification techniques can-
not be used for these types of models because they are
nonlinear in their parameters (notice the ŷ on the right-
hand side of these equations, indicating that the filters
operate on previous model output rather than actual
observations). Nonlinear estimation algorithms, based
on iterative gradient decent techniques, must be used
to determine the optimal model parameters. It is there-
fore necessary to carry along an estimate of the actual
radiation belt state, in addition to the model parame-
ters, if one wishes to track changes in model parame-
ters with time. The so-called Extended Kalman filter
(EKF) does this by design, and, if configured properly,
behaves very similarly to more traditional adaptive
maximum-likelihood algorithms [Ljung, 1979].
[38] Combining the ARMA with an FIR filter gives the

popular ARMAX model [Johansson, 1993; Ljung, 1999;
Nelles, 2001, and other standard texts]. Similarly, replacing
the FIR with an OE filter results in the well-known Box-
Jenkins model [Box and Jenkins, 1976]. These types of
models are considered nondeterministic because they
cannot generate output unless system observations are
available to calculate the residuals. This is illustrated more
clearly in Figure 8. Nondeterministic models may or may
not provide better predictions than deterministic models,
but they allow for better separation of the externally driven
and recurrent internal dynamics that both govern radia-
tion belt variability.

5.3. Multidimensional Radiation Belt State

[39] One assumption that has been made repeatedly
throughout this paper is that one is working in a one-
dimensional coordinate system (L-shell). This has obvious
scientific merit and value, but it is of little use to satellite
designers and mission operators, who will typically re-
quire data in a more standard 3-D cartesian coordinate
system. The Earth’s external magnetic field is constantly
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changing, complicating the necessary coordinate transfor-
mation tremendously on very short time-scales. The best
external field models to date are only accurate enough in a
highly time-averaged sense.
[40] From a practical standpoint, it is better to forego a

certain amount of physical understanding and simply start
with a more geographically consistent, gridded coordinate
system. This would be used to define finite volumes
through which various radiation sensors might fly. Each
finite volume would have its own time-adaptive filter(s)
describing its unique dynamical characteristics as well as
its relationship to other finite volumes within the overall
grid. Reasonable accuracy can be achieved early with only
a handful of grid points and sensor platforms due to the
considerable dynamical coherence of the radiation belts
[Baker et al., 2001; Kanekal et al., 2001]. This approach is
quite scalable, so once the EKF and filter-based model
framework is established, it is a simple matter to increase
the resolution of the model as more powerful computers
became available.

6. Summary and Conclusions

[41] We have shown that the Kalman filter (KF) provides
a robust framework for combining available data with a
dynamic model in order to generate the best possible
estimate of the current, and possibly future, state of the
electron radiation belt. A simple model structure (the finite
impulse response (FIR) filter) was given tremendous flex-
ibility by acknowledging the possibility that its parameters
might vary with time in a controlled manner. This, in
effect, allowed a linear model to reproduce output from a
very nonlinear dynamical system to a high degree of
accuracy.
[42] We observed significantly improved prediction

quality when compared to a time-invariant FIR model, if
not necessarily the ARX model. More importantly, how-
ever, we noted that there was almost zero auto-correlation
in the residuals of the KF with process noise, which means

that nearly all of the useful information available in the
electron flux time series was exploited to account for
persistence and other recurrent dynamics. In addition,
the cross-correlation between the KF residuals and the
solar wind speed input were much lower than the resid-
uals for either the time-stationary FIR, or the ARX model,
implying that the improved predictive ability of the adap-
tive KF is not simply a matter of accounting for persistence.
[43] The correlations for the KF residuals were not

perfectly white however, indicating that there is still room
for improvement. More appropriate real-time data, more
sophisticated baseline models, and a more realistic spatial
representation of the radiation belts will all serve to
enhance prediction quality and ultimately provide a
state-of-the-art space weather specification and forecast-
ing tool.
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